查看原文
其他

LA专题 | 董丽 邢小艺 | 气候变化如何影响城市植被?

董丽 邢小艺 风景园林LAVISION
2024-09-02

全文刊登于《风景园林》2021年第11期 P61-67

董丽,邢小艺.气候变化对城市植被的影响研究综述[J].风景园林,2021,28(11):61-67.


气候变化对城市植被的影响研究综述

董丽

女 / 博士 / 北京林业大学园林学院教授、博士生导师 / 植物景观与生态规划研究中心主任 / 本刊编委 / 研究方向为园林植物资源与应用、园林生态


邢小艺

女 / 北京林业大学园林学院在读博士研究生 / 研究方向为园林植物应用与园林生态


作者写作心得 

更多视频请关注《风景园林》杂志官方抖音号:LA7675


摘要

城市植被的生长发育受到气候变化的显著影响,从而限制了其生态系统服务的稳定供给。深入了解气候变化对城市植被的影响对于提高城市植被应对气候变化的生态适应性、维持生态系统稳定性及保障景观可持续性十分重要。本文对当前国内外气候变化影响城市植被的相关研究进展进行了综合阐述,旨在增进风景园林及相关行业人士对此方向的了解与关注。当前研究表明:全球气候变化对城市植被的生长状况、树种构成、物候特征、植物景观及生态功能等多方面产生了显著的直接或间接影响。既包括延长植物生长期等积极影响,也包括以下负面影响:气候变暖加速植物衰老;极端气候现象对植物生长构成胁迫;城市气候适宜生境(climatically-suitable habitats)减少导致树种多样性下降和生物入侵风险增大;气候变化带来的物候变化导致群落种间关系及植物季相景观改变;物候期的年际波动增加了游赏活动时间安排及物候相关疾病发生期预测的不确定性等。整体上负面影响更为突出,表明气候变化为城市植被带来的挑战远大于机遇。当前,该领域在中国开展的研究尚显不足,未来值得更多关注。

关键词

城市植被;气候变化;生长胁迫;生态适应性;树种构成;物候特征;植物景观


人类工业化和城镇化发展带来的气候变化已成为不可逆转的全球性气候现象。1880—2020年,全球平均气温已上升1.2±0.1 ℃,同时伴随降水量的显著改变和极端天气的频繁发生。在气候变化背景下,一方面,城市植被作为城市绿色基础设施的主要构成及生态系统服务的重要提供者,在维持碳氧平衡、缓解气候变化等方面发挥着重要作用,是城市发展应对气候变化的重要生态策略;另一方面,气候变化通过作用于植物生长而对城市植被的健康状况、整体发育及可持续演替等造成影响,进而增加了植被生态系统服务供给的不稳定性。从风景园林学科的角度了解气候变化影响下城市植被面临的问题及挑战,对于科学合理地保护、营建及管理城市植被极为重要。

当前国际上针对气候变化对城市植被影响的研究主要集中在植物生长状况、树种构成、物候特征、植物景观、生态功能等几个方面。


1 气候变化对城市植物生长的影响

1.1 全球变暖加速植物生长及衰老

二氧化碳浓度增加及气温升高是气候变化的主要表现,该变化会促进城市树木生长,且该促进作用对于幼龄树和生态适应性较强的树种更为显著。Pretzsch等研究发现,20世纪60年代以来,全球十大都市中城市及其周边树木的生长率提高了14%~25%。但同时,加速生长也意味着加速衰老及寿命缩短,从而会导致城市树木的替换频率增加,不利于生态系统服务功能的持续供给。

1.2 极端气候胁迫植物生长

除全球变暖外,近年来热浪、干旱、洪涝等极端天气频发也是气候变化的一个重要体现,这些灾害性天气的发生会对城市植被的生长带来极为不利的影响。

高温与干旱是导致城市树木死亡的重要因素。政府间气候变化专门委员会(Inter-governmental Panel on Climate Change, IPCC)报告指出,气候变化已导致夏季热浪发生频率及强度增加、持续期延长,而热岛效应又会进一步加剧城市高温热浪的发生。极端高温会阻碍线粒体呼吸和光呼吸、降低光合效率,严重者会导致叶片提早衰老脱落,当高温超过植物的耐受极限而植物无法快速适应时,其将会遭受严重的生理损伤甚至死亡。气候变化导致的全球水热资源分布不均加剧了局部地区的干旱问题,并对植物生长造成胁迫。在欧洲瑞士地区,1996—2002年间的降水不足和持续升温造成欧洲赤松大规模落叶和死亡,从而导致植被的总初级生产量显著下降。而在城市环境中,下垫面过度硬化导致的雨水下渗受阻、土壤含水量下降会进一步加重城市植被面临的干旱胁迫。


蒙椴叶片受夏季高温影响而提早变色衰老(2018年8月中旬拍摄于北海公园)


高温干燥的城市气候也为一些害虫种群的生存繁衍提供了适生环境,从而对城市树木的生长构成更大威胁。一方面,气候变暖会加速害虫发育并缩短其繁殖周期,使其分布范围扩大;另一方面,高温、干旱及洪涝等逆境会造成树木生理功能损伤,对病虫害的抵抗能力降低。此外,受气候暖干化的影响,城市森林中树木的含水量下降、易燃性提高,增加了火灾发生的可能性和火情蔓延程度。病虫害导致的大量树木死亡又会增加后续火灾发生的风险,从而加剧生物量丧失及空气污染等问题。

气候变化影响下区域降雨量增加导致的洪涝灾害频发也对城市植物的生长造成了突出威胁。生长期长期受涝会导致植物根部缺氧甚至腐烂,营养生长及生殖生长受阻,衰老期提前,严重者甚至死亡。近30年来,中国南方城市的暴雨洪涝频率呈增加趋势,城市排水系统常处于超负荷状态,导致局部积水问题突出,对植物的洪涝胁迫加剧。


2 气候变化对城市植被树种构成的影响

2.1 气候变化导致城市气候适宜生境减少,树种多样性降低

气候适宜生境(climatically-suitable habitats)指气温、降水等气候条件适宜某树种生长发育的环境及空间。Burley等研究发现,至2070年,澳大利亚核心城区中73%树种的气候适宜生境将有不同程度的减少,其中18%树种的气候适宜生境将减少50%以上。Yang指出气温升高是导致费城植被适应性整体下降的主要环境因素,至21世纪中叶,费城的平均气温将仅适宜33种树木生长。上述研究表明,部分树种因无法适应变化的城市气候环境而承受较大的生存压力甚至面临淘汰,从而导致城市树种多样性面临严峻挑战。

2.2 气候变化加速城市植被的树种更替,同时增大生物入侵风险

变化的城市气候在导致部分现有树种生态适应性下降的同时,也为一些外来树种提供了适宜的生存环境。适应于气候变暖的物种自然迁入及人工引种加速了城市植被的树种更新,而新物种的迁入则会改变原有的种间关系,进而影响植物群落稳定性。对于建成时间较短的城市绿地系统而言,由于其生态稳定性较低,新物种的自然迁入及加速的引种栽培活动在加快群落树种更新的同时也增加了生物入侵风险。


3 气候变化对城市植物物候的影响

3.1 气候变化导致植物物候期改变

温度是影响温带地区植物物候期最主要的环境因子。气候变化下的区域升温导致展叶期、花期等春季物候提前已成为全球范围的普遍物候现象。据IPCC报告统计,近几十年内,北半球生态系统的春季物候每10年平均提前2.8±0.35日。秋色期、落叶期等秋季物候期则呈延后趋势,只是其变化幅度小于春季物候。且展叶期提前及落叶期延后会导致植被生长季延长。此外,二次开花频率增加也是植物物候受气候变化影响的一个重要体现。20世纪80年代以来,受夏季热浪及暖秋等异常气候日渐频发的影响,国内树木的二次开花频率远高于之前。二次开花会扰乱植物休眠进程,造成不必要的养分损耗,导致正常开花季节花量减少及植株长势下降。

3.2 气候变化导致物候同步性错动和种间关系改变

植物物候对气候变化的响应特征存在明显种间差异,从而导致群落的物候同步性发生错动。物候同步性(phenological synchrony)指不同物种某一物候期的同步发生程度,或具有特定种间关系的不同物候期的同步发生程度。物候同步性的错动会导致竞争关系、营养关系等种间关系及群落结构发生改变。植物与传粉者之间的物候同步性错动会影响甚至打破其营养结构,致使植物受粉率、繁殖率下降,传粉者在关键生长发育阶段营养匮乏,从而导致双方种群数量减少;相似的影响还体现在植物生长期-植食性昆虫孵化期的物候同步性错动植物生长期-鸟类迁徙期的物候同步性错动。2020年美国亚利桑那州白翅哀鸽(Zenaida asiatica)的迁徙到达期整体晚于巨柱仙人掌(Carnegiea gigantea)的开花期,而仙人掌的花是白翅哀鸽到达迁徙地后的重要食源,因而该物候期的错动表明气候变化影响下此营养关系发生了改变,这会对白翅哀鸽种群的存活及繁衍构成威胁。


4 气候变化对城市植物景观及生态功能的影响

4.1 物候期变动影响城市植被的季相景观

一方面,物候同步性错动会通过改变特定时间的物候现象组合而对植物整体景观效果产生影响。例如,一个群落中不同植物花期同步性的改变会对群落开花景观时序、整体观赏期长短及色彩搭配效果等产生影响。另一方面,春季物候提前、秋季物候延后导致的生长季延长对于改善北方冬季及早春绿意匮乏的城市景观具有积极作用。此外,植物物候的年际波动会为春花、秋色等季节性游赏活动的时间安排带来更多不确定性,从而对当地旅游产业产生影响。


2018年(左)及2019年(右)4月15日北京植物园郁金香园同一视角的景观搭配效果对比


4.2 春季开花物候的年际波动对公众健康造成影响

气候变化会通过改变过敏源植物的花粉扩散期及扩散范围而对春季花粉过敏症的发生规律产生显著影响;此外,杨柳飞絮是北京等城市环境中威胁公众健康的一大隐患,城市热环境变化会通过影响繁殖物候期而改变杨柳飞絮的发生期和持续期,增加呼吸道疾病等相关病症发生时间及规律的不确定性,给疾病的预测和防控带来挑战。

4.3 气候变化对城市植被的生态功能构成双向影响

一方面,气候变暖会加速植物生长和衰老进程,高温等极端天气会对植物生长构成胁迫,这两者均会阻碍植物生态调节功能的持续供给。而另一方面,气候变暖导致的生长季延长意味着植物可保持更长的生理活跃期来吸收二氧化碳,从而提高碳汇量,并在改善空气质量等生态功能方面发挥更大的效应。

 

5 结语

气候变化对城市植被的生长状况、树种构成、物候特征、景观及生态功能等多方面均有不容忽视的直接或间接影响,且带来的挑战远大于机遇。当前,气候变化对城市植被影响的相关研究主要集中于欧美国家,且多从城市森林及树木的角度出发,研究的地理范围及对城市植被系统的整体关注仍显不足。针对中国气候条件及植物资源分布与应用的地域性特征,在中国城市植物景观如何响应气候变化方面开展的研究尚处于起步阶段。考虑到气候变化给城市植被带来的诸多负面影响,特别在“碳中和”“碳达峰”已成为中国可持续发展重要国策的背景下,加强气候变化对城市植被影响的研究,并在城市绿地营建及管理中针对性地提出气候变化适应性策略,是促进城市植被健康发育及生态系统服务可持续供给的重要保障。



为了微信阅读体验,文中参考文献标注进行了删减,详见杂志。

参考文献

[1] World Meteorological Organization. State of the Global Climate 2020, Provisional Report[R]. Geneva: World Meteorological Organization, 2020.

[2] LOCOSSELLI G M, DE CAMARGO E P, MOREIRA T C, et al. The Role of Air Pollution and Climate on the Growth of Urban Trees[J]. Science of the Total Environment, 2019: 652-661.

[3] GUAN X B, SHEN H F, LI X H, et al. A Long-Term and Comprehensive Assessment of the Urbanization-Induced Impacts on Vegetation Net Primary Productivity[J]. Science of The Total Environment, 2019, 669(15): 342-352.

[4] KAUPPI P E, POSCH M, PIRINEN P. Large Impacts of Climatic Warming on Growth of Boreal Forests Since 1960[J]. PLoS ONE, 2014, 9(11): e111340.

[5] FANG J, KATO T, GUO Z, et al. Evidence for Environmentally Enhanced Forest Growth[J]. Proceedings of the National Academy of Sciences, 2014, 111(26): 9527-9532.

[6] SAXE H, CANNELL M G, JOHNSEN Ø, et al. Tree and Forest Functioning in Response to Global Warming[J]. New Phytologist, 2002, 149(3), 369-399.

[7] PRETZSCH H, BIBER P, UHL E, et al. Climate Change Accelerates Growth of Urban Trees in Metropolises Worldwide[J]. Scientific Reports, 2017, 7: 15403.

[8] RÖTZER T, RAHMAN M A, MOSER-REISCHL A, et al. Process Based Simulation of Tree Growth and Ecosystem Services of Urban Trees Under Present and Future Climate Conditions[J]. Science of The Total Environment, 2019, 676: 651-664.

[9] ALLEN C D, BRESHEARS D D, MCDOWELL N G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-Off from Hotter Drought in the Anthropocene[J]. Ecosphere, 2015, 6: 129.

[10] O’SULLIVAN O S, HESKEL M A, REICH P B, et al. Thermal Limits of Leaf Metabolism Across Biomes[J]. Global Change Biology, 2016, 23(1): 209-223.

[11] SETTELE J, SCHOLES R. Terrestrial and Inland Water Systems[R]//IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2014.

[12] DRAKE J E, TJOELKER M G, VÅRHAMMAR A, et al. Trees Tolerate an Extreme Heatwave via Sustained Transpirational Cooling and Increased Leaf Thermal Tolerance[J]. Global Change Biology, 2018, 24(6): 2390-2402.

[13] LIN Y S, MEDLYN B E, DUURSMA R A, et al. Optimal Stomatal Behaviour around the World[J]. Nature Climate Change, 2015, 5(5): 459-464.

[14] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forest[J]. Forest Ecology and Management, 2010, 259(4): 660-684.

[15] JENKINS K, WARREN R. Quantifying the Impact of Climate Change on Drought Regimes Using the Standardised Precipitation Index[J]. Theoretical and Applied Climatology, 2014, 120(1-2): 41-54.

[16] REBETEZ M, DOBBERTIN M. Climate Change May Already Threaten Scots Pine Stands in the Swiss Alps[J]. Theoretical and Applied Climatology, 2004, 79(1-2): 1-9.

[17] GRANIER A, REICHSTEIN M, BRÉDA N, et al. Evidence for Soil Water Control on Carbon and Water Dynamics in European Forests During the Extremely Dry Year: 2003[J]. Agricultural and Forest Meteorology, 2007, 143(1-2): 123-145.

[18] ARNFIELD A J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island[J]. International Journal of Climatology, 2003, 23(1): 1-26.

[19] BRUNE M. Urban Trees Under Climate Change: Potential Impacts of Dry Spells and Heat Waves in Three German Regions in the 2050s[R]. Hamburg: Climate Service Center, 2016.

[20] WOODS A, COATES K D, HAMANN A. Is an Unprecedented Dothistroma Needle Blight Epidemic Related to Climate Change?[J]. BioScience, 2005, 55(9): 761.

[21] BASAK S R, BASAK A C, RAHMAN M A. Impacts of Floods on Forest Trees and Their Coping Strategies in Bangladesh[J]. Weather and Climate Extremes, 2015, 7: 43-48.

[22] AYRES M P, LOMBARDERO M J. Assessing the Consequences of Climate Change for Forest Herbivore and Pathogens[J]. The Science of the Total Environment, 2000, 262: 263-286.

[23] MCKENZIE D, GEDALOF Z, PETERSON D L, et al. Climatic Change, Wildfire, and Conservation[J]. Conservation Biology, 2004, 18: 890-902.

[24] MORITZ M A, PARISIEN M A, BATLLORI E, et al. Climate Change and Disruptions to Global Fire Activity[J]. Ecosphere, 2012, 3(6): 49.

[25] LITTELL J S, PETERSON D L, RILEY K L, et al. A Review of the Relationships Between Drought and Forest Fire in the United States[J]. Global Change Biology, 2016, 22(7): 2353-2369.

[26] ANDREWS P L, LOFTSGAARDEN D O, BRADSHAW L S. Evaluation of Fire Danger Rating Indexes Using Logistic Regression and Percentile Analysis[J]. International Journal of Wildland Fire, 2003, 12(2): 213-226.

[27] VEBLEN T T, HADLEY K S, NEL E M, et al. Disturbance Regimes and Disturbance Interactions in a Rocky Mountain Subalpine Forest[J]. Journal of Ecology, 1994, 82: 125-135.

[28] HICKE J A, JOHNSON M C, HAYES J L, et al. Effects of Bark Beetle-Caused Tree Mortality on Wildfire[J]. Forest Ecology and Management, 2012, 271: 81-90.

[29] MICHAEL Y, LENSKY I, BRENNER S, et al. Economic Assessment of Fire Damage to Urban Forest in the Wildland-Urban Interface Using Planet Satellites Constellation Images[J]. Remote Sensing, 2018, 10(9): 1479.

[30] BO M, MERCALLI L, POGNANT F, et al. Urban Air Pollution, Climate Change and Wildfires: The Case Study of an Extended Forest Fire Episode in Northern Italy Favoured by Drought and Warm Weather Conditions[J]. Energy Reports, 2020, 6(1): 781-786.

[31] KREUZWIESER J, FÜRNISS S. RENNENBERG H.  Impact of Waterlogging on the N-Metabolism of Flood Tolerant and Non-Tolerant Tree Species[J]. Plant, Cell and Environment, 2002, 25: 1039-1049.

[32] KOZLOWSKI T T. Responses of Woody Plants to Flooding and Salinity[J]. Tree Physiology, 1997, 17(7): 490.

[33] 刘志雨,夏军.气候变化对中国洪涝灾害风险的影响[J].自然杂志,2016,38(3):177-181.

[34] BURLEY H, BEAUMONT L J, OSSOLA A, et al. Substantial Declines in Urban Tree Habitat Predicted Under Climate Change[J]. Science of The Total Environment, 2019, 685: 451-462.

[35] YANG J. Assessing the Impact of Climate Change on Urban Tree Species Selection: A Case Study in Philadelphia[J]. Journal of Forestry, 2009, 107(7): 364-372.

[36] VALONE T J, BALABAN-FELD J. Impact of Exotic Invasion on the Temporal Stability of Natural Annual Plant Communities[J]. Oikos, 2017, 127(1): 56-62.

[37] XU H, DING H, LI M, et al. The Distribution and Economic Losses of Alien Species Invasion to China[J]. Biological Invasions, 2006, 8(7): 1495-1500. 

[38] DEHNEN-SCHMUTZ K, TOUZA J, PERRINGS C, et al. A Century of the Ornamental Plant Trade and its Impact on Invasion Success[J]. Diversity and Distributions, 2007, 13(5): 527-534. 

[39] GE Q, DAI J, ZHENG J, et al. Advances in First Bloom Dates and Increased Occurrences of Yearly Second Blooms in Eastern China Since the 1960s: Further Phenological Evidence of Climate Warming[J]. Ecological Research, 2011, 26(4): 713-723. 

[40] MENZEL A, SPARKS T H, ESTRELLA N, et al. European Phenological Response to Climate Change Matches the Warming Pattern[J]. Global Change Biology, 2006, 12(10): 1969-1976.

[41] FITTER A H, FITTER R S R. Rapid Changes in Flowering Time in British Plants[J]. Science, 2002, 296(5573): 1689-1691.

[42] GE Q, WANG H, RUTISHAUSER T, et al. Phenological Response to Climate Change in China: A Meta-Analysis[J]. Global Change Biology, 2014, 21(1): 265-274. 

[43] JEONG S, MEDVIGY D. Macroscale Prediction of Autumn Leaf Coloration Throughout the Continental United States[J]. Global Ecology and Biogeography, 2014, 23 (11): 1245-1254.

[44] 代武君,金慧颖,张玉红,等.植物物候学研究进展[J].生态学报,2020,40(19):6705-6719.

[45] WALTHER G R, POST E, CONVEY P, et al. Ecological Responses to Recent Climate Change[J]. Nature, 2002, 416 (6879): 389-395. 

[46] JEONG S J, HO C H, GIM H J, et al. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation over the Northern Hemisphere for the Period 1982—2008[J]. Global Change Biology, 2011, 17(7): 2385-2399. 

[47] ZHU W, TIAN H, XU X, et al. Extension of the Growing Season due to Delayed Autumn over Mid and High Latitudes in North America During 1982—2006[J]. Global Ecology and Biogeography, 2011, 21(2): 260-271. 

[48] FREITAS L, BOLMGREN K. Synchrony is more than Overlap: Measuring Phenological Synchronization Considering Time Length and Intensity[J]. Revista Brasileira de Botânica, 2008, 31(4): 721-724. 

[49] VISSER M E, BOTH C. Shifts in Phenology due to Global Climate Change: The Need for a Yardstick[J]. Proceedings of the Royal Society B, 2005, 272(1581): 2561-2569.

[50] THACKERAY S J, SPARKS T H, FREDERIKSEN M, et al. Trophic Level Asynchrony in Rates of Phenological Change for Marine, Freshwater and Terrestrial Environments[J]. Global Change Biology, 2010, 16 (12): 3304-3313.

[51] MILLER-RUSHING A J, HØYE T T, INOUYE D W, et al. The Effects of Phenological Mismatches on Demography: In Philosophical Transactions of the Royal Society of London[J]. Series B, Biological sciences, 2010, 365 (1555): 3177-3186.

[52] FELDMAN S T, MORRIS F W, WILSON G W. When Can Two Plant Species Facilitate Each Other’s Pollination?[J]. OIKOS, 2004, 105: 197-207.

[53] ISHII H, ASANO S. The Role of Crown Architecture, Leaf Phenology and Photosynthetic Activity in Promoting Complementary Use of Light Among Coexisting Species in Temperate Forests[J]. Ecological Research, 2010, 25: 715-722.

[54] MEMMOTT J, CRAZE P G, WASER N M, et al. Global Warming and the Disruption of Plant-Pollinator Interactions[J]. Ecology Letters, 2007, 10(8): 710-717.

[55] OLESEN J M, BASCOMPTE J, DUPONT Y L, et al. Missing and Forbidden Links in Mutualistic Networks[J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 278(1706): 725-732.

[56] ENCINAS-VISO F, REVILLA T A, ETIENNE R S. Phenology Drives Mutualistic Network Structure and Diversity[J]. Ecology Letters, 2012, 15(3): 198-208. 

[57] WILLMER P. Ecology: Pollinator-Plant Synchrony Tested by Climate Change[J]. Current Biology, 2012, 22(4): R131-R132.

[58] POST E, FORCHHAMMER M. Climate Change Reduces Reproductive Success of an Arctic Herbivore Through Trophic Mismatch[J]. Philosophical Transactions of the Royal Society B, 2008, 363: 2369-2375.

[59] TYLIANAKIS J M, DIDHAM R K, BASCOMPTE J, et al. Global Change and Species Interactions in Terrestrial Ecosystems[J]. Ecology Letters, 2008, 11(12): 1351-1363. 

[60] MCKINNEY A M, CARADONNA P J, INOUYE D W, et al. Asynchronous Changes in Phenology of Migrating Broad-Tailed Hummingbirds and Their Early-Season Nectar Resources[J]. Ecology, 2012, 93: 1987-1993.

[61] SCAVEN V L, RAFFERTY N E. Physiological Effects of Climate Warming on Flowering Plants and Insect Pollinators and Potential Consequences for Their Interactions[J]. Current Zoology, 2013, 59(3): 418-426.

[62] PARMESAN C. Influences of Species, Latitudes and Methodologies on Estimates of Phenological Response to Global Warming[J]. Global Change Biology, 2007, 13(9): 1860-1872. 

[63] TRYJANOWSKI P, SPARKS T H, KUŹNIAK S, et al. Bird Migration Advances More Strongly in Urban Environments[J]. PLoS ONE, 2013, 8(5): e63482. 

[64] LA SORTE F A, GRAHAM C H. Phenological Synchronization of Seasonal Bird Migration with Vegetation Greenness Across Dietary Guilds[J]. Journal of Animal Ecology, 2020, 90: 343-355.

[65] National Phenology Network. Does Arrival of White-Winged Doves Coincide with Open Flowers on Saguaro Cacti?[EB/OL].(2021-03-01)[2021-05-01]. https://data.usanpn.org/vis-tool/#/.

[66] NAGAI S, SAITOH T, YOSHITAKE S. Cultural Ecosystem Services Provided by Flowering of Cherry Trees Under Climate Change: A Case Study of the Relationship Between the Periods of Flowering and Festivals[J]. International Journal of Biometeorology, 2019, 63(4): 1051-1058.

[67] NEIL K, WU J. Effects of Urbanization on Plant Flowering Phenology: A Review[J]. Urban Ecosystems, 2006, 9(3): 243-257.

[68] EMBERLIN J, MULLINS J, CORDEN J, et al. The Trend to Earlier Birch Pollen Seasons in the U.K.: A Biotic Response to Changes in Weather Conditions?[J]. Grana, 1997, 36(1): 29-33. 

[69] JOCHNER S, BECK I, BEHRENDT H, et al. Effects of Extreme Spring Temperatures on Urban Phenology and Pollen Production: A Case Study in Munich and Ingolstadt[J]. Climate Research, 2011, 49(2): 101-112.

[70] D’AMATO G, CECCHI L. Effects of Climate Change on Environmental Factors in Respiratory Allergic Diseases[J]. Clinical Experimental Allergy, 2008, 38(8): 1264-1274. 

[71] XING X, DONG L, KONIJNENDIJK C, et al. The Impact of Microclimate on the Reproductive Phenology of Female Populus Tomentosa in a Micro-Scale Urban Green Space in Beijing[J]. Sustainability, 2021, 13(6): 3518.

[72] PENUELAS J, RUTISHAUSER T, FILELLA I. Phenology Feedbacks on Climate Change[J]. Science, 2019, 324: 887-888.

[73] NOWAK D J, CIVEROLO K L, RAO S T, et al. A Modelling Study of the Impact of Urban Trees on Ozone[J]. Atmospheric Environment, 2000, 34(10): 1601-1613.

[74] MCDONALD A G, BEALEY W J, FOWLER D, et al. Quantifying the Effect of Urban Tree Planting on Concentrations and Depositions of PM10 in Two UK Conurbations[J]. Atmospheric Environment, 2007, 41(38): 8455-8467. 



版面预览



相关阅读:

《风景园林》2021-11刊首语 | 郑曦:景观考古与大遗址保护

《风景园林》2021-11目录 | 景观考古与遗址保护 | 气候变化与绿色基础设施

新刊速览 | 《风景园林》2021-11 景观考古与遗址保护 | 气候变化与绿色基础设施

《风景园林》2021-11专题导读 | 景观考古与遗址保护

LA专题 | 钟翀 | 遗产廊道的深刻鉴别与再发现——日本线性历史景观研究中的历史地理学先发探查与解析

LA专题 | 赵忆 周娉倩 许超然 刘庭风 | 以考古学视野观察历史、景观与文明:基于景观考古学的皇家祭天遗址探析

LA作品 | 恐龙遗迹公园

《风景园林》2021-11专题导读 | 气候变化与绿色基础设施

LA专题 | 王龙欢 贾炳浩 戈晓宇 | 近35年气候变化对中国城市绿色基础设施的影响



完整深度阅读请参看《风景园林》2021年11期

扫描下方小程序码或点击阅读原文进入店铺购买

文章编辑  李清清

微信编辑  刘芝若

微信校对  王一兰

审核 曹娟


声明

本文版权归本文作者所有

未经允许禁止转载

如需转载请与后台联系

欢迎转发


继续滑动看下一个
风景园林LAVISION
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存